The Ratcheting AMM (“RAMM?) for Nexus Mutual

[V1.0]

Reinis Melbardis, Anatol Prisacaru, Miljan Milidrag

Summary

The following is a proposed upgrade to the Nexus Mutual protocol with the following aims:
e Bring the price of NXM used by the system and the open market price together again;
¢ Allow members who wish to exit to do so directly from the protocol at a reasonable price;
o Allow the protocol to capture capital when members wish to provide it; and

¢ Create positive value for long-term aligned members.

The proposed mechanism is named the Ratcheting Automated Market Maker (“RAMM?”), which
adapts the constant-product Automated Market Maker (“AMM”) mechanism, specifically Uniswap
v2!

We propose replacing the current Bonding Curve mechanism used for minting and redeeming
NXM tokens with the RAMM.

We expect to implement and launch the mechanism in two stages: with Stage 1 covering the
current scenario where the Mutual is highly capitalised; and Stage 2 adding functionality for the
low capitalization scenario when the Capital Pool approaches the Minimum Capital Requirement
(“MCR”).

This version of the whitepaper covers Stage 1 only, with the full Stage 2 mechanics to be added
in a later version of the document.

Operation

In summary, the proposed mechanism would work as follows:

e The MCR Floor is removed and the MCR is driven by the Total Active Cover Amount
going forward.

o Every time NXM is minted through the RAMM smart contract, the price goes up.
o Every time NXM is redeemed through the RAMM smart contract, the price goes down.

e This is achieved via two internal AMM pools, with the Mutual itself as the only (automated)
liquidity provider.

¢ Minting NXM through the RAMM smart contract is disabled below Book Value to avoid
dilution of other members.

The Ratcheting AMM (“‘RAMM?”) Whitepaper [V1.0]

https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/how-uniswap-works
https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/how-uniswap-works

Redeeming NXM through the RAMM smart contract is disabled above Book Value to
avoid dilution of other members.

To enable price discovery, there is a ratchet mechanism that moves the spot NXM prices
towards the Book Value over time from below for the Below Pool and from above for the
Above Pool.

ETH liquidity is allocated to the RAMM pools on an ongoing basis.

o If liquidity is below a defined Target Liquidity, liquidity is added to the pools as
long as Capital Pool exceeds the MCR.

o Ifliquidity is above a defined Target Liquidity, liquidity is withdrawn from the pools.

o Both the Above Pool and Below Pool use a single liquidity value, and interactions
in each pool also affect the liquidity in the other pool.

An Internal Price would be used for interactions with the system that aren’t directly
related to swapping ETH for NXM, such as valuing NXM in ETH/stablecoins for capacity
calculations, staking rewards, and buying cover in NXM. The Internal Price is calculated
using two separate Time-Weighted Average Prices (“TWAPs”) based on the spot prices of
the Above Pool and Below Pool, which are then combined to achieve the final Internal
Price.

There needs to be a small buffer around Book Value, the Oracle Buffer, where no swaps
are allowed, in order to avoid oracle-related arbitrage opportunities.

The Ratcheting AMM (“‘RAMM?”) Whitepaper [V1.0] ii

TABLE OF CONTENTS

SUMIMIAIY ..ttt ettt ettt e b et et et et e st e b e sse et e s e st essessestenteseeseesessansessassessaseaseeseesessansensansansansases i
OPEIATION .ttt b ettt b bttt bbb bbb e be st st s bbb ebe st sasbe b besentssesentseseneeses i
Proposed MechanisSm INTrOAUCTIONc..oovieviiieceececectestcteete ettt eae s be s eneebe s s ne 1
SPecific MEChANISIM GOAIS.......cociieceeece ettt ettt re et re et e aeebeebe b e s ensans 1
OPEratioN SUMMIAIYooueiriiirieieiiteierteee sttt sttt et sttt ettt st ettt s et be st sbestebe st sse s ebentesensenensens 1
Expected Outcomes of implementing the RAMM ...t 2
POSITIVES ...ttt bttt et e b ettt b ettt b bbbt e be btk e et be et be s et bene 2
INEGALIVE ..ottt ettt b s e bt esar s e b ese st et e s assabes et esasarsesesersesesaasesesarsesasansesans 3
Stage 1 RAMM Mechanism Operation DetailS.........ccccomieeeiceiceeceeee e 3
IMCR FLOOT ..ttt e et b et b s et sesasesasssssasesasesssssnsasesenasssssnsasesensesenersnsennas 3

TWO POOIS ...ttt ettt s ettt eb e s e st st e s s s ebasasassessasasasessesenessssensasesen 3
PAIAMETEIS ...ttt ettt ettt et e st st et e ae st e b eae st e st e ae st et eae st et ese st e st enensenaens 4
Operation Of the RAMM POOIS ...ttt ettt eete b s etess s esesbesaesesessesassaseas 5
MEMDET MINT SWAP ..ottt bbb as s b bbb as e asseteses s s s ssasenenes 6

Above POOI RATChETING DOWNuiiiiieie ettt ettt sttt bene 6

Member REAEMPLION SWaP ...c.oouiiieiicceteeee ettt ettt se b b s s st eseseesesseseseans 6

BeloW POOI RATCNEHING U w.vveieiieceeeeete ettt sttt st 7

LIQUIAITY INJECHION .ttt et sttt s s ae s s et s st s s sanes 7

LIQUIAITY REMOVAL vttt bbb bbbt st b et s e 7
IMPIEMENTATION NOTE ...ttt sttt ss e sss e sesasesssaseessanaes 8

Initial vs Long Term State Parameters....... ettt 8
INEEINAI PFICE .o 8
Need fOr @n INTEINAI PIICE ...ttt et e sas s e a st sesesabesesesesens 8
PATAMETEIS ..ottt et e b e sa st st e s e s e s st essasasesassssassasasesersssassasasesersssessnsesens 9
Proposed Internal Price MeChaNiSM ...ttt ss e easesaens 9
Internal Price FIOOr @nd CaIlING ...ttt ettt tass bt sssass bt esesassesens 10

TWAP Technical Implementation Methodology ... 10

Note on Further Work — Stage 2 implementation ... "
Rationale and Goal of the Stage 2 Implementation.........cccceeeeciccieeeeee e 12

The Ratcheting AMM (“‘RAMM?”) Whitepaper [V1.0] iii

The Ratcheting AMM (“RAMM”)

Proposed Mechanism Introduction

We propose removing the Minimum Capital Requirement” (“MCR”) Floor of 162,425 ETH and
have the MCR value be driven by actual risk exposures. In conjunction, we also propose
decoupling the system NXM price from the MCR value and instead let it be set (mostly) by supply
and demand by means of an internal Automated Market Maker (“AMM”) pool.

We propose that Nexus Mutual replaces the current minting and redemption system (i.e., the
Bonding Curve mechanism) with one where two virtual internal one-sided Uniswap v2-style™
pools determine the price at which the Mutual is willing to allow NXM redemptions in value-

accretive ranges, complemented by a price ratchet to enable price discovery.

Specific Mechanism Goals

The proposed mechanism has the following aims:
e Bring the price of NXM and the open market valuation together again;
¢ Allow members who wish to exit to do so directly from the protocol at a reasonable price;
o Allow the protocol to capture capital when members wish to provide it; and

o Create positive value for long-term aligned members.

Operation Summary

In summary, the proposed mechanism would work as follows:

e The MCR Floor is removed and MCR is driven by the Total Active Cover Amount going
forward. The current on-chain formula is:

Total Active Cover Amount
4.8

MCR =

e Every time NXM is minted through the RAMM smart contract, the spot price increases.

o Every time NXM is redeemed through the RAMM smart contract, the spot price
decreases.

e This is achieved via internal AMM pools, with the Mutual itself as the only (automated)
liquidity provider.

e The minimum price for minting NXM from the protocol in exchange for ETH is at Book
Value (“BV”), where:

BV = Capital Pool value in ETH
a NXM Supply

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0]

https://docs.nexusmutual.io/protocol/capital-pool/mcr
https://docs.uniswap.org/protocol/V2/concepts/protocol-overview/how-uniswap-works

This is to avoid dilution of other members. Therefore, the Above Pool operates in the
price range:

spot, = BV * (1 + oracleBuffer)

e The maximum price for redeeming NXM to the protocol in exchange for ETH is at Book
Value to avoid dilution of other members. Therefore, the Below Pool operates in the price
range:

0 < spoty, < BV * (1 — oracleBuffer)

e« To enable price discovery, there is a ratchet mechanism that gradually moves the Above
Pool and Below Pool spot prices towards the Ratchet Target Values:

Ratchet Target Values = BV * (1 + oracleBuffer)
e Liquidity is allocated to the RAMM pools on an ongoing basis.
o Iflig <liqiqrger, liquidity is added to the pool as long as:
Capital Pool > MCR + liqtgrget
o Iflig > ligtarget, liquidity is withdrawn from the pool.

e AnInternal Price (“ip”) would be used for interactions with the system that aren’t directly
related to swapping NXM for ETH, such as valuing NXM in ETH/stablecoins for capacity
calculations”, staking rewards¥ and buying cover in NXM. The Internal Price is calculated
using two separate Time-Weighted Average Prices (“TWAPs”), twap, and twap, based
on the spot prices of the Above Pool and Below Pool, which are then combined to
achieve the final Internal Price.

¢ There needs to be a small buffer around Book Value, where no swaps are allowed, in
order to avoid oracle-related arbitrage opportunities. This is the oracleBuf fer.

Expected Outcomes of implementing the RAMM

Positives

e Book Value increases as a result of each swap by definition.

o Capital is captured at prices above Book Value and removed from the Mutual below Book
Value.

¢ Creates an automatic, efficient buyback mechanism for value-accretive NXM burning.

¢ Removes the direct dependency between capitalisation levels and the price of the token,
decoupling market forces and the Mutual’s liability risk management.

¢ Open market to internal valuation price gap closed via arbitrage opportunities. This allows
the Mutual to price risk and manage capacity at market-consistent values.

¢ Via liquidity and ratchet parameter setting, a variety of outcomes can be achieved in the
long term. For example, it is possible to either follow the open market valuation of the

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 2

https://docs.nexusmutual.io/protocol/capacity/
https://docs.nexusmutual.io/protocol/capacity/
https://docs.nexusmutual.io/protocol/staking/
https://docs.nexusmutual.io/protocol/cover/

Mutual or act as a price maker by providing significant liquidity at a certain level (e.g.,
initially providing a lot of exit liquidity up to Book Value for those who want to exit now).

Negatives

¢ Mental anchoring to Book Value when it is the ratchet target, especially with regard to the
downward ratchet when NXM price > Book Value. Possible to manage this by setting
appropriate parameters (e.g., lower Target Liquidity).

e High number of parameters leads to potential complexity and outcomes difficult to
predict, especially immediately after launch.

e Price and capital capture outcomes highly dependent on market forces, including the
open market external to the Mutual.

Stage 1 RAMM Mechanism Operation Details

MCR Floor

Remove the MCR Floor parameter which was set at 162,425 ETH.
After implementation:

Total Active Cover Amount

MCR = f(Cover) = 15

Two Pools

We propose replacing the existing Bonding Curve with two RAMM pools:
1. An Above Pool, which mints NXM tokens and receives ETH.
o Takes in ETH deposits and distributes NXM.

o Has an NXM price floor equal to (1 + oracleBuf fer) * BV, which means no NXM
can be minted from the protocol by providing capital below this price.

o Price is driven up instantaneously by users minting NXM.

o Price reduces towards the price floor over time via the ratchet mechanism with
ratchetTarget, = (1 + oracleBuffer) = BV.

o ETH Liquidity in the pools increases when users deposit ETH via the Above Pool.
2. A Below Pool, which burns NXM tokens and distributes ETH.
o Takes in NXM and distributes ETH.

o Has an NXM price ceiling equal to (1 — oracleBuffer) * BV, which means no
NXM can be redeemed from the protocol above this price.

o Price is driven down instantaneously by users redeeming NXM.

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0]

o Price increases towards the price ceiling over time via the ratchet mechanism with
ratchetTarget, = (1 — oracleBuffer) = BV.

o ETH Liquidity in the pools decreases when users withdraw ETH via the Below
Pool.

Parameters
The following section summarises the list of parameters affecting the RAMM spot prices. The

example parameters below have been discussed by the community as opening parameters, but
are still subject to an on-chain governance vote for approval.

Parameter Description Example Value
Book Value ("BV") Capital Pool value in ETH 0.0217 ETH
NXM Supply

lig ETH liquidity in the pools 5,000 ETH

NXM, Notional NXM reserve in the | 174,216.03 NXM
Above Pool

kg Above Pool invariant equal 871,080,150
to lig x NXM,

NXM, Notional NXM reserve inthe | 526,315.79 NXM
Below Pool

ky Below Pool invariant equal 2,631,578,950
to lig x NXM,,

spot, Current price at which 0.0287 ETH

members can swap ETH for

NXM. Equal to —2
NXM,

spot, Current price at which 0.0095 ETH
members can swap NXM for

ETH. Equal to —2

NXMy,
liqtarget Target ETH liquidity 5,000 ETH
ligSpeed ¢ Max amount of ETH that is 100 ETH

removed from the pools
daily as long as lig >
liQtarget

initialBudget Amount of ETH that needs to | 43,835 ETH
be injected before the
ligSpeed;,, and
ratchetSpeed, parameters
change from Initial State to
Long-term State

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 4

Parameter

fastLiqSpeed;,

Description

Initial State: max amount of
ETH that is added to the
pools daily. This value is
active until an amount of
ETH equal to initialBudget
has been injected into the
pools

Example Value
1,500 ETH

ligSpeed,;,

Long-term State: max
amount of ETH that is added
to the pools daily. This value
becomes active after an
amount of ETH equal to
initialBudget has been
injected into the pools

100 ETH

ratchetTarget

Middle value towards which
the spot prices move over
time

BV

oracleBuf fer

Margin to allow for oracle lag
when calculating Book Value
in ETH. Secondary function
— create spread.

1%

ratchetTarget,

Value towards which spot,
moves over time

(1 + oracleBuffer)
* ratchetTarget

ratchetTarget,

Value towards which spot,
moves over time

(1 — oracleBuffer)
* ratchetTarget

ratchetSpeed,

Daily decrease in spot,
when above ratchetTarget,

4% of ratchetTarget

fastRatchetSpeed,,

[nitial State: Daily increase in
spot, when below
ratchetTarget,

50% of ratchetTarget

ratchetSpeed,

Long-term State: Daily
increase in spot, when
below ratchetTarget,

4% of ratchetTarget

Operation of the RAMM pools

This section describes the operation of the RAMM pools, with some examples.

Note that both the ETH liquidity and the NXM reserves in the pools can be thought of as virtual
and act mostly to establish price and price impacts as a result of swaps. The RAMM smart
contract itself holds no ETH or NXM tokens—the ETH is held in the Capital Pool and the NXM

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0]

reserves are a balancing item. NXM is burned through member redemptions, even though it
increases the number of notional NXM in the Below Pool. NXM is only actually added to the total
supply via the RAMM when members mint tokens through depositing ETH via the Above Pool.

Member Mint Swap

e User specifies number of ETH they want to swap for new NXM, n.

e Now there will be newlLiq = liqg + n ETH in the pools.
kq

newlLiq

e Member receives x = NXM,; — newNXM, NXM for theirn ETH.

e The invariant doesn’t change, so newNXM, =

Note that in order to maintain the price constant in the Below Pool at the same time, the NXM
spoty

Below Pool reserve (and invariant) will be updated, so newNXM,, =
newNXM,,.

nd newkK, = newliq *
newLiqa d b q

Above Pool Ratcheting Down

e newSpot, = max(spot, — ratchetSpeed, *» days since last Above Pool swap, ratchetTarget,)

e The downward ratcheting of price is achieved by increasing NXM, while keeping lig
constant.

e Throughout the time period between member mints, n NXM is added to the NXM reserve

in the Above Pool, where n = L NXM,.
newsSpot,

e The new number of NXM in the virtual pool becomes newNXM, = NXM, + n.

e The invariant changes to newkK, = liq * newNXM,.

. . l
e The price that members can now obtain per NXM, —_has decreased.
newNXM,

Member Redemption Swap

e User specifies number of NXM they want to redeem, n.

e Now there are newNXM, = NXM, + n NXM in the Below Pool.

kp

¢ The invariant doesn’t change, so the ETH liquidity becomes newlLiq = ———
b

e Member receives x = lig — newLiq ETH for their n NXM.

Note that in order to maintain the price constant in the Above Pool at the same time, the NXM

Above Pool reserve (and invariant) will be updated, so newNXM, = %

newNXM,.

and newK, = newliq *

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 6

Below Pool Ratcheting Up

o newSpot, = min(spot, + ratchetSpeed, * days since last Below Pool swap, ratchetTargety)

e The upward ratcheting of price is achieved by decreasing NXM,, while keeping liq
constant.

e Throughout the time period between member mints, n NXM is removed from the NXM

reserve in the Below Pool, where n = NXM, — S
newSpoty

e The new number of NXM in the virtual pool becomes newNXM, — n.

e The invariant changes to newKj = lig *x newNXM,
liq

WXM[, has increased.

e The price that members can now obtain per NXM,
Liquidity Injection

e ETH liquidity in the pools is lig and Target Liquidity is liq;arget-
o Iflig <liq¢qrger and Capital Pool > MCR + liqqrget, increase the liquidity newLiq =

min(liq + ligSpeed * days since last observation, liqtarget).

o To keep spot prices constant, update the NXM reserves:

spot
o newNXM, = —b2>a
newliq
spot
o newNXM, = —Po°b
newliq

o Update the invariants to allow for new liquidity and reserve parameters:
o mnewK, = newNXM, * newLiq

o newkK, = newNXM, x newLiq
Liquidity Removal

e ETH liquidity in the pools is lig and and Target Liquidity is liqiqrget-
o Iflig > liq¢qrger decrease the liquidity newliq = max(liq — ligSpeed yyt *
days since last observation, liqtarget).

o To keep spot prices constant, update the NXM reserves:

spot
o newNXM, = -E>a
newliq
spot
o newNXM, = —22b
newlLiq

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 7

¢ Update the invariants to allow for new liquidity and reserve parameters:
o newK, = newNXM, x newliq

o newk, = newNXM, x newlLiq

Implementation Note

For the purposes of implementation in Solidity, the ratcheting and liquidity functions are likely to
be combined into a single update of price and liquidity. This function will be called and the
parameters updated every time there is a swap or every time there is a request by the system of
the Internal Price.

Initial vs Long Term State Parameters

A short-term aim of the system upgrade proposed here is to enable a reasonable amount of exit
liquidity for those members who have been unable to redeem their NXM directly from the Mutual
as a result of the high MCR Floor employed by the current Bonding Curve mechanism.

To achieve this aim, the implementation differentiates between two parameters used in the Initial
State and the Long-term State. These parameters are:

e fastLigSpeed;, (Initial State) and ligSpeed;, (Long-term State).
e fastRatchetSpeed, (Initial State) and ratchetSpeed, (Long-term State).

The Initial State parameters will be used at launch. There is also a fixed ETH amount,
initialBudget, which is depleted at the same rate as liquidity is added to the pools via the
Liquidity Injection mechanism. Once depleted, the two parameters will switch between Initial
State and Long-term State.

Internal Price

Need for an Internal Price

Cover and cover fees are denominated in ETH/DAI, but staking rewards and open capacity are
denominated in NXM, so there is need for a manipulation-resistant NXM price that is used by the
system.

This metric would not affect the price at which members can mint and redeem NXM from the
protocol, but would instead be used to:

e Calculate capacity opened up for covers as a result of NXM staking;
o Act as a conversion rate for buying covers using NXM; and

o Act as a conversion rate for rewards assigned to NXM stakers resulting from cover buys.

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 8

Parameters

The following section summarises the list of parameters for the RAMM-derived Internal Price.

Parameter ‘ Description

twap, Time-weighted average price of the Above Pool
twapy Time-weighted average price of the Below Pool
cumulativePrice, Cumulative price of the Above Pool
cumulativePricey, Cumulative price of the Below Pool

observation A single observation contains the cumulative price for

each pool and the timestamp for when the cumulative
price sample was taken

granularity Number of observations stored at one time by the twap
mechanism

obsIndex Index of the observation where each sample for the twap
is stored

periodSize Size of time period over which the twap observations are
taken

currentTimestamp Timestamp of the current block, in the same units as
periodSize

Pa Above Pool price allowing for the spot price, calculated

as p, = min(twapy, spot,)

Db Below Pool price allowing for the spot price, calculated as
pp = max(twapy, spoty)

ipFloor Used to set a floor for the Internal Price, expressed as a
percentage of Book Value

ipCeil Used to set a ceiling for the Internal Price, expressed as a
percentage of Book Value

Internal Price ("ip") Final Internal Price used by the system, calculated as
ip = max (min(p, + pp — BV, ipCeil * BV) ,ipFloor * BV)

Proposed Internal Price mechanism

We propose an Internal Price which:

e Calculates TWAPs based on the trades in the Above Pool — twap, — and the Below Pool
— twap, — over a significant period of time.

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 9

e Sets the spot prices as limits on the TWAPs to incorporate the ratchet and avoid arbitrage
opportunities (e.g., members immediately redeeming their NXM rewards at a higher price
than was used to mint them).

o pg = min(twapg, spot,)
o pp = max(twapy, spoty)

o Determines the final price used by the system by effectively picking between the Above
Pool and Below Pool depending on which one is being actively used.

The formula used for this is ip = p, + pp — BV.

If a pool isn’t actively being used for swaps for a significant amount of time its p; will sit at
the ratchet target level, so will cancel out with the BV term.

If both pools have had recent active trades, this formula also effectively finds a weighted
average between p, and p, where the weightings are determined by the distance of each
p; from Book Value.

Internal Price Floor and Ceiling

We propose a hard floor and ceiling for the Internal Price. Having a floor and ceiling provides a
layer of additional protection against manipulation of the Internal Price.

These are proposed to be multiples of Book Value.

In addition, even if the actual market price sits outside of the (floor, ceiling) range, the floor and
ceiling values would increase available cover capacity in low-price scenarios and limit capacity in
high-price scenarios. This works in favour of the Mutual in extreme scenarios, as:

o There is still capacity to buy cover even if NXM price is very low, enabling the Mutual to
carry on its main purpose; and

e Capacity opened up by temporary extreme upwards price movements is restrained,
dampening the exposure the Mutual can take on during these scenarios.

TWAP Technical Implementation Methodology

The oracle model is conceptually similar to the Uniswap v2 oracle* and is based on the same
principle. The major difference is the embedded sampling mechanism.

At all times, the RAMM contract holds granularity = 3 samples, each an observation . Each
observation contains a cumulativePrice,, cumulativePrice, and the timestamp for when the
sample was taken.

The cumulativePrice; are calculated the same way as explained in the Uniswap v2 oracle docs."

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 10

https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles
https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles

The observations are stored in an array and are referenced by their obsindex. The obsindex is
calculated as:

currentTimestamp

obsIndex = ceil()mod granularity

periodSize
where granularity is equal to the total number of observations stored.

Each time there is a swap, a lookup for the ip or a trackable NXM supply change:

e lig, NXM, and NXM, are updated to reflect the liquidity injection/removal and the ratchet,
and spot, and spot, are calculated.

e The new cumulativePrice; are calculated and recorded as the new sample in the
relevant observation.

e The other observations are updated up to the latest second of their period.

Consulting the oracle to obtain twap, and twap,, is done by first calculating the current
cumulativePrice; and subtracting the cumulativePrice(i — 2) from the observation from two (2)
periods ago.

The time-weighted average prices are both calculated as:

cumulativePrice; — cumulativePrice;_,

twap = ; -
P seconds between observation; and observation ;_y

Given that previous observations are always updated to the latest second, the resulting twap will
compare the cumulativePrice; for up to 2 * periodSize in the worst case scenario and 1 *
periodSize in the best case scenario.

Note on Further Work — Stage 2 implementation

The mechanism described in this document represents the Stage 1implementation of the RAMM,
and is designed with the current situation in mind, where the Mutual is highly capitalised relative
to the MCR.

However, the Stage 1implementation alone could become problematic as the Capital Pool
approaches MCR (or, indeed, the MCR grows to reach the Capital Pool). A solution to the
potential issues is intended to be implemented as part of the Stage 2 RAMM design. A draft
adaption of the RAMM exists for the range where Capital Pool is close to MCR, but will be added
to a new version of this document as it becomes fully refined and implemented.

The rationale for required modifications is presented in some more detail below.

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] "

Rationale and Goal of the Stage 2 Implementation

The RAMM Stage 1 solution generally treats Book Value (Capital Pool / NXM Supply) as:

¢ The line below which swapping ETH for NXM is not allowed, as the Mutual would be
allowing minting of NXM at a price where Book Value would decrease and existing
members would be diluted.

e Below this line, members can still redeem their NXM for ETH, as the Mutual is happy to
allow value-accretive redemptions NXM from members.

e To enable price discovery with the market below this line, the price at which the protocol
lets members redeem NXM for ETH moves automatically towards the Book Value ceiling.

e This price discovery works well as long as there is sufficient ETH liquidity in the pool so
that the AMM price movements from members redeeming and the speed of the price
ratchet balance each other out to find the right market price.

However, if the amount of capital we have approaches the MCR (i.e., the amount the Mutual
needs to reliably pay claims), liquidity stops getting injected into the pools.

With low liquidity, it's possible that users stop trading with the Mutual and the Internal Price gets
pinned to ratchetTarget,, while the market price is below that. This could result in NXM price
decoupling from market price, which would again reduce the Mutual’s ability to attract capital and
cause issues with cover and capacity mispricing.

The Stage 2 RAMM adaptation will aim to address the potential discrepancy between the RAMM
spot price and open market price in this scenario.

"https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/how-uniswap-works
" https://docs.nexusmutual.io/protocol/capital-pool/mcr

i https://docs.uniswap.org/protocol/V2/concepts/protocol-overview/how-uniswap-works
v https://docs.nexusmutual.io/protocol/capacity/

v https://docs.nexusmutual.io/protocol/staking/

v https://docs.nexusmutual.io/protocol/cover/

vil https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles

Vil https://docs.uniswap.org/contracts/v2/concepts/core-concepts/oracles

The Ratcheting AMM (“‘RAMM”) Whitepaper [V1.0] 12

